NLP with spaCy - An introduction to NLP

31 days ago

NLP with spaCy and business tools you can build right now - An Introduction to NLP Tools

Let's take a look at how you can use spaCy, a state of the art natural language processing tool, to build custom software tools for your business that increase ROI and give you data insights your competitors wish they had.

import spacy and a code example

What is NLP?

Natural language processing is the study of our natural language through speech or text, and how it can be manipulated or understood by software and algorithms. Studying NLP has been around for a long time, more than 50 years, and has gained interest from deep learning and data science developers with how we can build models to produce, manipulate and understand text.

While NLP picked up with a focus on using statistics and classical linguistics models to process our language, we have turned a corner and now use deep learning neural networks as the focus point for NLP based systems. Many large research groups have focused on building large models already trained on billions of words (like GPT-3), while many other architectures come with a few smaller pre-trained models but allow you to easily and efficiently train the model on whatever you want to use it for (Bert/spaCy/Tensorflow). One of the most important parts of NLP is processing and deriving insights from unstructured text data for other ML use cases, a task that can be daunting without NLP.

What is SpaCy?

SpaCy is an open source library for enterprise grade NLP in python. SpaCy stands out amongst some of its competitors (NLTK) because of its cutting edge abilities and is designed specifically for production use. This tool is perfect for answering questions based on text like - “What companies are mentioned in this article?”, “which paragraphs are similar to each other?”, “Where do I add my credit card?” as well as perform tasks like text classification. SpaCy comes with many pre-trained models in all different languages that are amazing out of the box, but also allows you to train custom models on your own data to optimize for your specific use case.

SpaCy allows you to use a processing pipeline to move from raw text to the final “Doc”, which lets you add different pipeline components to your NLP library and act on your input. Things like a tokenizer, tagger and parser act on the Doc. You can also add things like statistical models and pre-trained weights for different tasks, or use built-in custom components.

With the wide range of capabilities of spaCy you can imagine there are a ton of business oriented components that allow you to build simple or complex software tools that can help you increase product ROI, assist you with customer service, or reduce your manual workflow - saving you a ton of money. Let’s first take a look at a few important capabilities of spaCy in a little more detail, then dive into some business tools to build.